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An asymptotic solution of the Cauchy problem is obtained for the first order 

quasi-linear equation. The field of characteristic curves is constructed. It 
is shown that for fairly considerable times the solution is discontinuous, but 
tends to a smooth stationary distribution. Numerical calculations obtained 

by the method of characteristics are presented. Results of the asymptotic and 

numerical analysis are in good agreement. 
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A homogeneous boundless plasma subjected to a strong high-frequency radiation [l] 
or a beam of particles [2] is unstable. Exponentially increasing with time t .electro - 
magnetic oscillations with a wave vector k from some phase spaceregidn Are induced in it 
during the initial linear stage. Nonlinear processes become substantial later when the 
energy spectral density w (k, t) reaches a high level. Such processes result in the 

saturation of the electromagnetic wave energy. The state of plasma under such con- 

ditions is called turbulent [3-51. Investigation of the evolution of the energy spectral 
density of turbulent noise serves as the base for determining the form of functions of 
plasma particle distribution and the law governing the absorption and dispersion by the 

plasma of beams of particles or of powerful radiation. These questions are fundamental 
in the problem of the utilization of powerful light beams and of relativistic electrons 

for heating plasma, 
1. The definition of evolution of plasma turbulence reduces in a number of cases 

[6-91 to solving the Cauchy problem. 

au 1 
22 

x--u -=u l--z?+ 
[ 

\ dz'q (z’ - z) u (z’, t)] (1.1) 

21 

u (29 0) = uo (4, q < 2 < 2s 

where U (2, t) cu w (k, t) is the angular distribution of pulsation energy. The 
variable z determines the deviation of oscillation propagation. which increases by 
increments 1 _ 2s , from the direction of the most intensive oscillation buildup. 

The integral term defines the nonlinear stabilizing mechanism -induced dispersion of 
waves on plasma particles used in [6-91. The interaction between particles and 

electromagnetic waves results in the change of direction of the latter, and leads to 
a redistribution of the energy pulsations induced in the phase space region (21 > 1 
The turbulent noise is transferred to the attenuation zone z> 1, where the increment 
is negative. The nonzero energy density is maintained in attenuation regions IzI > 1 

owing to the equilibrium between energy absorption by nlasma qarticles and the ther - 

ma1 excitation of nulsations (the teim 1 / u in the left part of (1. 1). The “carrying out 
of noise ” from the oscillation buildup region to that of a+tentiation stabilizes energy 

distribution in the phase space. 
The position of maximum deviations z1 and +, and the form of the core q(E)depend 

on the particular physical system. All q (E) cores are odd functions that tend to 

zero at rapid exponential rate with the characteristic scale 1 / fi < 1 when ( E I +- 00 
[S-9]. For functions u (z, t), with the characteristic length of variation of the 

greater core width 1 / p, (1.1) is, for p +- 00 equivalent to the quasi-linear first 

order equation [6, 8, 91. 

au 1 ---= 
;at ll 

u (1 - 22) - EU ag 
u (2, 0) = uo (z), --00 < z < 00 

(1.2) 

Investigation of the quasi-linear equation (1.2) is of interest for several reasons. 
First, it is possible to carry out an asymptotic analysis for e 3 0. Second, the 

total information about the form of core Q is contained in the single numerical par- 
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ameter e < 1. Third, it is oossible to trace on a simple exam&e how the con - 

vectton effects -known in gas dynamics and nonlinear acoustics -are com?licated by 

the peculiar to plasma ohenomenan of oscillation buildup and thermal generation of 
oscillations. 

Differential approximations for integro-differential equations similar to (1. 1) were 
considered in [lo, 121 without allowance for terms reflecting the buildup and thermal 

generation of noise. The stationary ordinary differential po.uation 
du 

eU d7 = + + u (1 - 2”) (1.3) 

which follows from (1.2) was used in [ 6,8,13] for defining the stationary energy dis- 
tribution in the phase space. 

2. Problem (1.2) is equivalent to the Cauchy problem for the characteristic sys- 
tem of ordinary differential equations, which after the transformation y =- u2 

becomes 

z (0) = 20, y (0) = yo (20) =- 140* (4 

where the first equation defines the behavior of the unknown function y (2) along the 
characteristic curve whose shape is determined by the second equation. Parameter e 

is small (e < rl). 

The subsequent analysis is based on the method of joining asymptotic expansions 

[14,15]. The pattern of behavior of characteristics of Eq. (1.2) in the (2, r)-- plane 
appears in Fig. 1, where characteristic curves are shown by solid lines and the traject- 
ories of shock discontinuities by dash lines. Roman numerals denote characteristics 

of various kinds which differ by the initial value of the coordinate.2, = 2 (0) as fol)owf: 

1: 20 < --1; ]I: z. = --1 + AEQ, 
111: 20 

A = 0 (I), A < 0, 0 < u < a/a; 

= -1 + AE”, A = 0 (1), a > ‘aIs; IV: ,a0 = -1 + A+, A = 

0 (I)* a = 2/s; v: z. == _ 1 -+. Aaa A ~1 0 (l), 
a/r&; VI: 

A>% O<a< 
---I < 20 < 1; VII: z. = 1 +‘Aea, A =:_I 0 (I), A < 0, ()< o< 

2fs; VIII: z, = 1 -I- Aea, A = 0 (11, u > ‘is; Ix: a0 -= 1 + A&a, 
A = 0 (21, a = ‘1s; ;x: zo == 1 -t- A@; A = 0 (I), A > 0, 0 < a<2/5; 

XI: 20 > 1 

Arabic numerals denote regions through which pass the characteristic traiectortes. 

In each of these re 

Fig. 1 
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Subsequently the analysis will be limited to the first terms of these expansions. Numbers 
of regions and subscripts of internal variables that define solutions in these regions 

coincide. Regions with idenacal expansions are denoted by identical numbers. 
The complete description of solution requires the analysis of 46 zones along var- 

ious characteristic curves. Below we present only the fundamental aspects of the 
asymptotic analysis, omitting details that can be obtained by analogy. The num- 

bering of variables and of regions of nonhomogeneity coincides with that in Fig, 1, 

We introduce variables 

t1 = t, Y, = Y, rx = (2 - 2,) / e 
which transform (2.1) into system 

dY, / dt, = 2 + 2y, (1 - ~02 - e2r,z0 - earl) 

drt / dt, = ‘ffy, Q(O) = 0, Y,(O) = yo (20) 
whose solution 

(2.2) 

(2.3) 

yi = {Y” (Q) e-X~s-l)~l + _A__... 
202 - 1 

[I - e-e(r,‘-i)~*]} (1 + 0 (8)) (2.4) 

)“I = @,a - I)-1 {Yyol’s (20) - YlQ + E (t1, 20)) 
g (fl, zo) - ; p.2 _ j)-‘I* In ?io”‘(~o)-(~*2--1)-“~ ?I;‘*+ (202- f)-‘le 

1 
?/6’2(2”) + (202 - l)-‘f* yl’lr - (Q2 - f)-‘lz 

I 

E (t,, .&I) = (1 - z02)-“* Iare tg ((1 - zOz) YO (z~))*” - 
202 - 1 > 0 

arc tg ((1 - zo2) y,p1 
is valid in regioni: z - zO = 

z*2 - 1 < 0 

0 (a), and t = 0 (1) for all initial values of arg- 

ument z = 2.a at the real axis, except the small neighborhoods of points z = z!z 1 

(Fig. 11, where the instability increment 1 -- I$ = o (1) is small. This case should 
be considered separately. We extend the construction of characteristic curves of the 

kind 1 and XI (Fie. I) with initial values 1 20 1 > 1 and introduce the substition 

tz = Etl, y, = y,, r2 = 8r.l = 2 - 20 (2.5) 
which transforms Eq. (2.3) into system 

edYz J’ & = 2 + 2~2 (1 - .$ - 2rsza - r2’2”) (2.6) 

dr, I dt, = l/K 

The integral (2.6) which satisfies the conditions of joining with solutions(2.4) in region 
1 

Y2 -+ (20~ - I)-', r2 -t-t2 (zo2 - I)-'12; E -.+.o; y, 
I t1, ?I = 0 (1) 

is of the form 

Y2 = (2” - 1)-l (1 + 0 (8)); In j(z2 - 1)*/z - 2 f + 2 (2” - 1)1/* = (2.7) 

{Bt, + In 1(zo2 - 1)"s - z. 1 + z. (z,"--%)'I*) (1 + 0 (15)) 

Formulas (2.7) define the stationary distribution of the energy spectral density, since 
the expression for the unknown function Y = (z2 - 1)-l does neither have an explicit 
dependence on time nor the dependence on initial conditions. In region 2 where 

Z - z. = 0 (1) and t = oa-z. and in regions which follow it along the 
characteristic the unknown function n = fyconforms to the stationary equation (1.3) 
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that was investigated in [13]. Equation of the characteristic curve is obtained from the 

second formula of (2. 1) and related conditions of joining, For z. > 1 expansion 

(2.7) completes the construction of the characteristic of kind XI (Fig. 1). 
bet us extend the construction of the trajectory of kind1 with initial valuezo< - 1 

(Fig. 1). Expansion (2.7) joins in region 3, where z + 1 = 0 (e’ib), and 

0 > t + (2&)-l {In 1 (zo2 - l)Q - G 1 + 2, (z,” - 1)“Z) = 0 (&‘I&) 

the solution 
Y, = IV2 (7.3) {I + 0 (a”*)} (2.8) 

13 = {~dSW’(E~ + ~dW’(E)) {I + O(~“~)} 
a cm 

t3 = {tz + 2-l Ilnl(zo2 - I)‘/2 - z. 1 + z. (zo2 - 1)+/z]} &A, 

y3 = y&, r3 = (z + 1) E-‘/B 
which defines the rapid increase of the energy of noise. 

Functionw (rJ shown in Fig. 2 by the dash line satisfies the equation dW/dr, = 
W-2 + 2r, and has the following asymptotics [13]: 

W = (-2rJ11p, r-3 -+ --co; w = r32 I 1.633, 7-3 -+- 00 
The conditions of joining principal terms of expansions do not provide means for 

determining the first integral in Eq. (2.8) of the characteristic trajectory. 
However the dependence of the solution of system 

(2. 1) on the initial value, 20. is continuous. Using 

this it is possible to show that the indicated integral 

in (2.8) is zero. A similar procedure is applied 

below in other cases without further explanations. 

-3 0 3 For -l<z<2 

and {t + (2e-l) [In ( (zo2 - I)‘/?- z. I + z. (zo2 - I)‘/21 } = 0 (1) 

the noise energy attains considerable values Y == 0 (ae2) and the solution in this 

region is defined (Fig. 1) by formulas 

Y4 = (z - z3/3 t 2/3)2 { 1 + 0 (E+)} 

(z + I)-’ - l/An I z + 1 I + l/aln (z - 2 1 = -_t4 {I -+- 0 (&*ih)} 
(2.9) 

y4 = EU’Byg, t4 = &t3, z = &%f.3 - 1 

ExDansion in the transition region when z - 2 = 0 (e) and 

{t + W-1[lnl(z~2 - IP - zol + z. (zo2 - I)] + l/&e} = 0 (1) 
(Fig. 1) is of the form 

- ‘/aYtl’ -t- (6V%Tn ( [(3y,)‘~ f I] [(3y,)~r~ _ 1~-11 zt2.10) 
r5 {I + 0 (e’/s)} 

r. 

S c@&?’ (E) = t5 { 1 + 0 (Ella)); 
-0,BB 

r6 = (z - 2) e-l, 

Ss = y4em2, t5 = t4 + +-lne 
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It links (2,9) with the solution which defines the equilibrium between the absorption 

of plasma particle energy and the thermal noise generation 

y, = (2” - Q-1 (1 + 0 (fPls)), IIl@2--l)l~~ - 21 + 2 (2” - i)‘Jx = (2.31) 

{2t,’ + In (Z-39 + 2+3’1*) (1 + 0 (e’ls)} 

ta’ = et + 2-l {ln~(zo2 - I)‘/* - zOl + z. (zo2 - i)‘ls} 4 Vselne 
The characteristic curves (2.11) are similar to the curves (2.7) already considered, 

but are shifted relative to the latter into the region of considerable times t (Fig. 1). 

Exnansions (2.11) are valid in region 

2’ : 2 > 2, t Z3 - (2e)“l (In](zo2-i)1~s - z. 1 + z. (zo2 - l>‘ls} - l/s]ne + e-l. 
3. For z. = 1 + de=, 0 < a < 00 and A = 0 (1) (characteristics 

of the kind VII _ X in Fig. 1) the instability increment 1 - zos =: 0 (ea) is ini - 
tially small. We introduce variables 

ts = tl, ,Y,, = yz, r6 = (Z - 1 - Aea)esl (3.9 
which transfer (2.3) into the system 

4/e I dts = 2 + 2y, (-26~ - A%P - 2$+a rsA - 2erg - e2ra”) (3.2) 

b I dts = v/ye 
Its solution which satisfies initial conditions 

r6 (0) = 0, y6 (0) = y. (zo = 1 + A&‘) 

is of the form $46 = {at, + yo(zo)) (1 + 0 (EU + E)} (3.3) 
r6 = 1/3 (r2t, + yo(zo)ls~~ - yo3in (2,)) (1 + 0 (ea + e)) 

which is valid in region 6: 2 - 20 = 0 (e) and t = O(1) (Fig. 1). 
Further analysis is subdivided into several stages depending on which of the three 

conditions 0 < a < 2j6v ‘is < a < * or a = 21, is valid. 

Let us consider the first case 0 < o < a/s. 

System (3.2) in variables 

y, c: Pys, tT = eatg, r7 = e3a’2r6 (3.4) 
is of the form 

dy, f dt, = 2 - 2~7 I2A + eaA2 + 2r,$-6@lz + 27, Agl-W~ + 
r,2~2(‘-2~)] 

dr7 I & = l/ii 
(3.5) 

The solution of these equations that satisfies the conditions of joining with (3.3) 

y7 --f 2tr, 37, --t (2t7P; ye, t6, r6 = 0 (I), e -ho 
is defined by expansions 

y7 = (2Ai-l (1 - exp I--4AtJ) (1 + 0 (6 + e1++)} (3.6) 
J-7 = -(2A)-“~~{[l - exp (-4At7)J’~~ + Z’ln f ff- 

exp (-4At,)]‘la - 1 1 - 

2-Yn I[1 - exp (--4&)P + 11) {I + 0 (ea + el-6+)], 
A>@ 
r7 = (-24+ {Iexp (-4At,) - 1P - arctg [exp (-4At,) - 

lI”*} (1 + 0 (e” + e1-5a12)}, A < 0 

Region 7 is determined by formulas 

(2 - zo) = 0 (ehJ2-1 ), t = 0 (P) 
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Let US extend the analysis to the case of A < 0 which corresponds to the initial 

coordinate 20 in the region - 1 < z < 1, z - 

System (3. 5) in variables 
1 = O(E~) of oscillation buildup. 

t,s = t7 - (-2A)-flne~~"1, yIo = E*-say,, rIo I= &l-w+, + A (3.7) 
reduces to the equations 

(3.8) 

The asymptotic solution of this system which satisfies the conditions of joining (3. 6) 

ylo + (--2APxp {--4Atr0}, rlo -+ (-2A)+ exp {-2At,,) 

Y7, t7r 1*7 = 0 (I), E -to 

is represented by functions 

tlo = (-2A)-1 {In/ (r,* - A)@,,, i_ A)-11 + s/&r (--2A)}(2+ 0 (~~-i-~'-~~'~)) 

Y (rlo2 10 = -- AZ)2 {I + 0 (la -+ E1-5w)) 13.9) 

These expansions are valid in region 10: z - 1 = 0 (em), t = 0 (E+)~ with 
0 < a < 2/5. The characteristic trajectories (3.9) intersect each other. This pro- 

perty is independent of the initial distribution y, (z) and is tlie consequence of internal 
processes, viz. oscillation buildup in region 121 < 1 and transfer over the spectrum 

( the convection term). For fairly considerable times and arbitrary initial conditions 

the solution of problem (1.2) is discontinuous. The time te of discontinuity onset sat- 

isfies the inequality t, G mjn (- 2A@)-1 In @aI s-i = (- 2A)-1 In 8-l 
0<a<*lr 

The analysis of remaining variants shows that characteristics of the kindVJI1 - X 

do not intersect each other (Fig, 1). When t 2 8-l they coincide in the first aplrox- 

imation with the trajectory of the kindX1 (2.7) that corresponds to parameter z. = 1. 

Let the initial values of coordinates be 20 = -3 + AE”, o > 0, A = 0 (1) 
(characteristics if the kind 11 - v Fig. 1) Substituting variables 

ttl = t1, Ya = y,, rlj = (2 + 

we obtain from (2.3) a system of equations and 
conditions 

dye / & = 2 + 29, (ea2A - nz2aA2 - 

dre I dt; = l/i,, 

I - AE~)E-~ (3.10) 

its integrals which satisfy initial 

e*+a2r,A + e2rs - e2re2) (3.11) 

Ya = pi3 + Yo (zo>) I(1 + 0 (e” + 4) 

r8 = VS {K% + y. (z0)P - ydlz (zo)} (1 + 0 (8” + e)f 

(3.12) 

In the first approximation ( 3.11) and (3.12) are the same as (3.21 and (3.3). The 
analysis is subdivided into several stages, viz.0 < a < 2/s, a > 2/~~ and a = 2/~. 
Let us consider the second of these, namely a > 2i,. The substitution 

reduces system (3.11) to 
ti4 = E*k,, rid = &r6, yip = &y6 (3.13) 
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Substituting w = l/lil: and using the equality ~~~~~~~~~ = y~~~~zdy~~fdr~~, 
we obtain equations for the principal terms of the expansions of unknown functions 

d!V f drl, = Ff,‘-2 + 2r15, dr,, / dtle = J+’ (3.15) 

The conditions of joining 

w -+ (3rJ’a, 1’14 -+1/s (2t,,)+; re, ta, y, = 0 (I), 8 -to 
(3.26) 

follow from (3.12). Integral curves of the first of Eqs. (3.15) are shown in Fig. 2. 
Conditions (3.16) are satisfied by the trajectory which passes through the coordinate 
origin w = WO @la! The solution 

r11 

~14 = W02 @;4), tu = 5 dW,’ (ii) 

0 

(3.17) 

shows, as (2.8), the rapid increase of noise energy due to the increment which is lin- 
ear with respect to the coordinate, Note that (2.8) and (3.17) satisfy the same system 
of Eqs. (3.15) but for different initial conditions, The dimensions of region 14 are the 

same as those of region 3. but the former is displaced in the direction of shorter times 

t: e i- 1 = 0 (&?I), t = 0 (e”$ Functions (3.17) merge with solution of the 

kind (2.9) in region -1 < z < 2 Fig. 1 . 
Further analysis can be carried out on the basis of the stationary equation (1.3) [13]. 

Investigation of all possible variants shows that the characteristic trajectories of the 
kind Ii-v with the initial condition 20 = -1 + A&“, o > 0 and A = 0 (l)do 

not intersect each other, and for t 2 i/.Jn e-1 + e-1 coincide in the first approxi- 
mation with the characteristic of the XT kind which corresponds to the initial coordinate 

20 = 2 ,(see (2.7)). 
1. The unknown function increases exponentially in accordance with (2.4) along 

characteristic curves with parameter 20 within the range --f < 20 < 1 . When 
t = O[(f - zo2)-rlne-r] the noise energy attains considerable values Y = 0 (~2). 

The substitution of variables z = &r, -I- zo, yls = e2Yl and tv = tl - (1 - 
~,3--lj~g-l transforms system (2.3) to one of the form 

dy13 I dtls = 2e2 i- Zy,, (1 - z2) 

dz / d&s = Jfy,, 

With the use of equality dy,, / dtls = yl;bdy13 / dr13, for the principal terms of ex- 
pansion we obtain the equation 

&l/zs = 1- 22, z = J&3 (4.1) 

The nonstationary “turbulent” solution 

Yl3 -a - zo2)(z - zo)12, (2 - 20) -+(I - 2$2)-l {y, (20) + 

(I - zua)-l>“l exp [(I - z02)t13] (4.2) 

t‘Y Yl, tl * 0 (Q, 8 --ho 

which satisfies the conditions of joining (2.4), is defined by expansions 

y,, = ( 2 - l/323 

3 [Ah (z - 
- 20 + V3203)3 (1 + 0 (e)} - (4.3) 

ZO) + Blrl (2 - 2,) + Cln (2, - 41 + c,, = t13 (1 + 0 E)} 
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%I - - zo i 2-(3-3/4z02)‘J,, Zs = - z,/2 + (3-3/qz,,y~ (4.3) 
A = l/3 (zo”-1)-l, B = vrJ [z, (3_3/~2~2~J~ + 2 (1 - zo2 / 4)]-’ 

c = 93 I2 (1 - .2*2 / 4) - .&j (3-3/420*)~q-~ 

Cl, = 3B In (2, - Z,) -t- 3C In (z, - zO> + 

(1 - zOz)-‘ln ((1 - z02)[y0 (2,) + (1 - zoz)-r]-~~~} 

Region 13 is determined by formulas 
2 - 20 = 0 (I), t + (1 - z02)-Qre = 0 (1) 

The inequality &3 (& %‘) > ylB (2, zo) is satisfied for fixed z along char- 

acteristics of the kind VI and various initial values of the 

--f D i? z 

Fig. 3 
coordinate 20’ < 2, . Hence the characteristic trajectories (4.3) with lower val- 
ues of tile initial coordinate z,, approach the trajectories with higher values of that 

coordinate and intersect the latter. Such pattern of the field of characteristic curves 

(Fig, I) corresponds to a discontinuous solution of the quasi-linear equation (1.2). 

Let us consider trajectories with small initial values of coordinate !&I < 1. 

The relationship 

hi = f(z, zo)=+q$- - -+I 11 + Yo(Z,)] (4.4 

follows from (4.3). 
The point of intersection of two characteristics close to each other is defined by 

the equation 

af 
az,== 

3 (ZF-2) v’s v’a+z 
22 (3 - 22) +T1nl/&_z 

- - $ [I + yo(zo)]-l~ = 0 (4.5) 

which makes it possible to predict the point of incipient discontinuity (z~, t,). 
It follows from (4.5) that when y. (z) G 1 then Z, N t/z, and t, E In (f/s / e). 

Equation (1.2) with initial condition u. (2) s 1 and parameter e = 0.3 

was solved numerically by the method of characteristics [X6]. 
solutions (curves denoted by numerals l-7 relate to times 

In Figs. 3-5 are plotted, 
t = 0,0.4,1.0,1.8, 

2,2,2.~,3.~), the field of characteristics in the (z, t)- plane, and the amplitude ev- 
olution at the time of shock discontinuity Iril. Asymptotic estimates of the time of 
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shock wave onset and attenuation t s z 111(1/r/ e) = 1.75 and t, CT 1/31n~-1 + 

E-1 z s.iis in agreement with the results of numerical computations (Fig. 5). 

Fig. 4 

The dincontinuous general solution of the correctly formulated Cauchy problem for 
the quasi-linear equation must satisfy a certain condition at the discontinuity trajectory 

2 = 2, (t). That condition may be obtained by using the divergent form of Eq. 

(1.2). The correct condition at the discontinuity satisfies the inequality which in the 
notation used here is of the form [17,18] 

&?L (2, + 0) < dz, / dt < EU (2, - 0) (4.6) 

In gasdynamics this condition corresponds to the law of entropy increase and ex- 
cludes solutions of the kind of rarefaction shock waves. Equation (1.2) corresponds to 

a continuum of correct conditions at the discontinuity [17, 181. On physical consider- 
ations we select the condition 

dz, / dt = 8 / 2 [u (2, + 0) + 245 (2, - O)] (4.7) 

which corresponds to the conservation of the noise energy stream through the shock 
front in the wave vector space. 

The solution of problem (1.2) is discontinuously independent of the initial distrib- 

ution y0 (2) , although its detailed form, for instance, the number of simultaneously 

existing discontinuities is dependent on the initial condition. Characteristics whose 

parameter 20 is outside the interval -1 ( z0 < 2 do not intersect trajectories of the 

shock discontinuity, while those with that parameter within the range -1 < Z, < 2 
form a shock wave. Characteristic trajectories with initial conditions from the neigh- 

borhood of point z = -1 asymptotically approach for t 2 1/31neL1 -k 8-l the 

curve emerging from point t = 0, z = 2. Hence the amplitude of the shock discon- 
tinuity ful = 17.4 (zS+ 01-U (2, - 0) I, which is proportional the the difference 

of the tangents of inclination angles of intersecti*jc c!laracteristics at the intersection 
point, tends to zero when t > ‘/&a- ’ + IS-~. After this the stationary distribution, 
which is the same as that obtained in [13], is established. By viriue of (4. 6) this qual- 
itative result is valid for any correct conditions at the discontinuity. Conclusions reached 
by asymptotic analysis are confirmed by numerical computations (Figs. 1, 3-S). 

The evolution of plasma turbulence saturated by spectral transfer occurs in three 
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time stages (Fig. 3). 
0 < t < he- 

First, the plasma noise increases exponentially in the interval 

in the region Iz[ < 1 of oscillation buildup and, then, de- 
creases in the attenuation region IzI > 1. 

In the interval he-l < t < E-1 the noise energy attains considerable val- 
ues U = 0 (6-l>, and the intensive spectral transfer results in the onset of a shock wave 

in the phase space. In the case of a discontinuous solution Eqs. (1. 1) and (1.2) are not 
asymptotically equivalent. Numerical computations of problem (1. 1) in [7] show that 
the shock wave has a dispersion structure. For t 2 ‘/3]ne-1 the solution of the integro- 
differential equation (1. 1) has an oscillatory character with a scale of 1 / bequa to 
the core width. 

Further behavior of the spectral density of oscillation energy is determined by the 
attenuation of the shock wave at t 3 In&-1 + &--I and the establishment of a 
smooth stationary distribution. 

The author thanks V. V. Aleksandrov, V. V. Pustovalov, V. P. Silin, and V. T. 

Tikhonchuk for their help in formulating the problem, its discussion, and interest in it. 
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Flows of gas at velocities close to the isentropic and isothermal speeds of 
sound in channels with slowly changing temperature and curved walls are 
considered. The model takes into account the convection nonlinearity re- 

sulting from the cumulative effect of perturbation propagation. It also 

permits the analysis of the arbitrary effect of radiation on the motion of gas. 
The derived nonlinear system of equations defines the flow of gas in chan- 
nels whose transverse optical thickness is of the order of unity. Similar 

equations for quasi-isentropic flows appear in [l]. 

1. Input equations. Let us consider the stationary equilibrium flow of an inviscid 

non-heat-conducting radiative gas in a channel with plane or axial symmetry. The 

channel walls are assumed to be nearly parallel planes or, in the case of axial symm- 
try, to have a nearly cylindrical surface. In the plane case the channels are assumed 
to be symmetric about the plane y = 0. 

We assume that the input of radiation to the internal energy density and 

pressure is small. The motion of such medium is defined by the equations 

g + -& -& yd-'pv = 0 

&I 

Ual 
+vg+$g=o, 

Uaz 
av+vg+f2E=Q 

pT(u$+v$-) +divq=O 

to the 

where p is the pressure, p is the density, 2” is the temperature, s is the entropy of 


